PTPμ Regulates N-Cadherin–dependent Neurite Outgrowth
نویسندگان
چکیده
Cell adhesion is critical to the establishment of proper connections in the nervous system. Some receptor-type protein tyrosine phosphatases (RPTPs) have adhesion molecule-like extracellular segments with intracellular tyrosine phosphatase domains that may transduce signals in response to adhesion. PTPmu is a RPTP that mediates cell aggregation and is expressed at high levels in the nervous system. In this study, we demonstrate that PTPmu promotes neurite outgrowth of retinal ganglion cells when used as a culture substrate. In addition, PTPmu was found in a complex with N-cadherin in retinal cells. To determine the physiological significance of the association between PTPmu and N-cadherin, the expression level and enzymatic activity of PTPmu were perturbed in retinal explant cultures. Downregulation of PTPmu expression through antisense techniques resulted in a significant decrease in neurite outgrowth on an N-cadherin substrate, whereas there was no effect on laminin or L1-dependent neurite outgrowth. The overexpression of a catalytically inactive form of PTPmu significantly decreased neurite outgrowth on N-cadherin. These data indicate that PTPmu specifically regulates signals required for neurites to extend on an N-cadherin substrate, implicating reversible tyrosine phosphorylation in the control of N-cadherin function. Together, these results suggest that PTPmu plays a dual role in the regulation of neurite outgrowth.
منابع مشابه
Modifier of cell adhesion regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth.
Modifier of cell adhesion (MOCA) is a member of the dedicator of cytokinesis 180 family of proteins and is highly expressed in CNS neurons. MOCA is associated with Alzheimer's disease tangles and regulates the accumulation of amyloid precursor protein and beta-amyloid. Here, we report that MOCA modulates cell-cell adhesion and morphology. MOCA increases the accumulation of adherens junction pro...
متن کاملGanglioside modulation of neural cell adhesion molecule and N-cadherin- dependent neurite outgrowth
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not...
متن کاملN-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro
Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic d...
متن کاملPurified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth
N-cadherin is the predominant mediator of calcium-dependent adhesion in the nervous system (Takeichi, M. 1988. Development (Camb.). 102: 639-655). Investigations using antibodies to block N-cadherin function (Bixby, J.L., R.L. Pratt, J. Lilien, and L.F. Reichardt. 1987. Proc. Natl. Acad. Sci. USA. 84:2555-2569; Bixby, J.L., J. Lilien, and L.F. Reichardt. 1988. J. Cell Biol. 107:353-362; Tomasel...
متن کاملThe contrasting roles of N-CAM and N-cadherin as neurite outgrowth-promoting molecules.
The neural cell adhesion molecule (N-CAM) is a prominent member of the immunoglobulin gene superfamily of recognition molecules. It operates in a calcium-independent manner to promote cell-cell adhesion. Alternative splicing of a single gene generates more than twenty N-CAM isoforms and these can be further modified by the differential addition of complex N- and O-linked carbohydrates. In contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 144 شماره
صفحات -
تاریخ انتشار 1999